ÌâÄ¿ÄÚÈÝ
7£®½«Ô²C1£ºx2+y2=4ÉÏÿһµãµÄ×Ý×ø±ê±£³Ö²»±ä£¬ºá×ø±ê±äΪÔÀ´µÄ$\sqrt{5}$±¶µÃµ½ÇúÏßC2£®£¨1£©Ð´³öC2µÄ²ÎÊý·½³Ì£»
£¨2£©ÒÑÖªF£¨-4£¬0£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\begin{array}{l}\left\{\begin{array}{l}x=-4+\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.\end{array}$£¨tΪ²ÎÊý£©£¬Ö±Ïßl½»ÇúÏßC2ÓÚA£¬BÁ½µã£¬Çó|AF|+|BF|
·ÖÎö £¨1£©Çó³öÇúÏßC2µÄÆÕͨ·½³Ì£¬¼´¿Éд³öC2µÄ²ÎÊý·½³Ì£»
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì±äΪ$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t¡ä}\\{y=\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëx2+5y2=20£¬»¯¼òµÃ$3t{¡ä}^{2}-4\sqrt{2}t¡ä-4=0$£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó|AF|+|BF|£®
½â´ð ½â£º£¨1£©ÉèÔ²C1ÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ÇúÏßC2ÉÏÈÎÒâÒ»µãP'£¨x'£¬y'£©£¬
ÔòÓÉÌâÒâµÃ$\left\{\begin{array}{l}x'=\sqrt{5}x\\ y'=y\end{array}\right.$£¬¡à$\left\{\begin{array}{l}x=\frac{1}{{\sqrt{5}}}x'\\ y=y'\end{array}\right.$´úÈëC1·½³Ìx2+y2=4£¬¿ÉµÃ$\frac{{{{x'}^2}}}{20}+\frac{{{{y'}^2}}}{4}=1$£¬
¼´ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2\sqrt{5}cos¦È\\ y=2sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì±äΪ$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t¡ä}\\{y=\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëx2+5y2=20£¬
»¯¼òµÃ$3t{¡ä}^{2}-4\sqrt{2}t¡ä-4=0$£¬Éè·½³ÌµÄÁ½¸öʵ¸ùΪt'1£¬t'2£¬¡àt'1+t'2=$\frac{4\sqrt{2}}{3}$£¬t'1t'2=-$\frac{4}{3}$£¬
Ôò|AF|+|BF|=|t'1-t'2|=$\sqrt{\frac{32}{9}+4¡Á\frac{4}{3}}$=$\frac{4\sqrt{5}}{3}$£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
| A£® | a£¼b£¼c | B£® | c£¼b£¼a | C£® | c£¼a£¼b | D£® | b£¼c£¼a |
| A£® | 36 | B£® | 60 | C£® | 72 | D£® | 96 |
| ÂúÒâ | ²»ÂúÒâ | ºÏ¼Æ | |
| ÄÐ | 10 | 20 | 30 |
| Å® | 15 | 5 | 20 |
| ºÏ¼Æ | 25 | 25 | 50 |
| P£¨K2¡Ýk£© | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
| A£® | ÓÐ95%µÄ°ÑÎÕÈÏΪ¶ÔµçÊÓ½ÚÄ¿µÄÂúÒâ¶ÈÓëÐÔ±ðÎÞ¹Ø | |
| B£® | ÓÐ99%µÄ°ÑÎÕÈÏΪ¶ÔµçÊÓ½ÚÄ¿µÄÂúÒâ¶ÈÓëÐÔ±ðÎÞ¹Ø | |
| C£® | ÓÐ99%µÄ°ÑÎÕÈÏΪ¶ÔµçÊÓ½ÚÄ¿µÄÂúÒâ¶ÈÓëÐÔ±ðÓÐ¹Ø | |
| D£® | ÓÐ95%µÄ°ÑÎÕÈÏΪ¶ÔµçÊÓ½ÚÄ¿µÄÂúÒâ¶ÈÓëÐÔ±ðÓÐ¹Ø |
| A£® | ¡÷ABCµÄÄÚ²¿ | B£® | ¡÷ABCµÄÍⲿ | C£® | PÔÚÏß¶ÎACÉÏ | D£® | PÔÚÏß¶ÎABÉÏ |