ÌâÄ¿ÄÚÈÝ

7£®½«Ô²C1£ºx2+y2=4ÉÏÿһµãµÄ×Ý×ø±ê±£³Ö²»±ä£¬ºá×ø±ê±äΪԭÀ´µÄ$\sqrt{5}$±¶µÃµ½ÇúÏßC2£®
£¨1£©Ð´³öC2µÄ²ÎÊý·½³Ì£»
£¨2£©ÒÑÖªF£¨-4£¬0£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\begin{array}{l}\left\{\begin{array}{l}x=-4+\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.\end{array}$£¨tΪ²ÎÊý£©£¬Ö±Ïßl½»ÇúÏßC2ÓÚA£¬BÁ½µã£¬Çó|AF|+|BF|

·ÖÎö £¨1£©Çó³öÇúÏßC2µÄÆÕͨ·½³Ì£¬¼´¿Éд³öC2µÄ²ÎÊý·½³Ì£»
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì±äΪ$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t¡ä}\\{y=\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëx2+5y2=20£¬»¯¼òµÃ$3t{¡ä}^{2}-4\sqrt{2}t¡ä-4=0$£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉÇó|AF|+|BF|£®

½â´ð ½â£º£¨1£©ÉèÔ²C1ÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ÇúÏßC2ÉÏÈÎÒâÒ»µãP'£¨x'£¬y'£©£¬
ÔòÓÉÌâÒâµÃ$\left\{\begin{array}{l}x'=\sqrt{5}x\\ y'=y\end{array}\right.$£¬¡à$\left\{\begin{array}{l}x=\frac{1}{{\sqrt{5}}}x'\\ y=y'\end{array}\right.$´úÈëC1·½³Ìx2+y2=4£¬¿ÉµÃ$\frac{{{{x'}^2}}}{20}+\frac{{{{y'}^2}}}{4}=1$£¬
¼´ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2\sqrt{5}cos¦È\\ y=2sin¦È\end{array}\right.£¨¦ÈΪ²ÎÊý£©$
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì±äΪ$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t¡ä}\\{y=\frac{\sqrt{2}}{2}t¡ä}\end{array}\right.$£¨t¡äΪ²ÎÊý£©´úÈëx2+5y2=20£¬
»¯¼òµÃ$3t{¡ä}^{2}-4\sqrt{2}t¡ä-4=0$£¬Éè·½³ÌµÄÁ½¸öʵ¸ùΪt'1£¬t'2£¬¡àt'1+t'2=$\frac{4\sqrt{2}}{3}$£¬t'1t'2=-$\frac{4}{3}$£¬
Ôò|AF|+|BF|=|t'1-t'2|=$\sqrt{\frac{32}{9}+4¡Á\frac{4}{3}}$=$\frac{4\sqrt{5}}{3}$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì£¬¿¼²é²ÎÊýµÄ¼¸ºÎÒâÒåµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø