ÌâÄ¿ÄÚÈÝ
20£®ÎªÁËÔöÇ¿»·±£Òâʶ£¬ÎÒУ´ÓÄÐÉúÖÐËæ»ú³éÈ¡ÁË60ÈË£¬´ÓÅ®ÉúÖÐËæ»ú³éÈ¡ÁË50È˲μӻ·±£ÖªÊ¶²âÊÔ£¬Í³¼ÆÊý¾ÝÈçϱíËùʾ£º| ÓÅÐã | ·ÇÓÅÐã | ×Ü¼Æ | |
| ÄÐÉú | 40 | 20 | 60 |
| Å®Éú | 20 | 30 | 50 |
| ×Ü¼Æ | 60 | 50 | 110 |
£¨¢ò£©Îª²Î¼ÓÊÐÀï¾Ù°ìµÄ»·±£ÖªÊ¶¾ºÈü£¬Ñ§Ð£¾Ù°ìԤѡÈü£¬ÒÑÖªÔÚ»·±£²âÊÔÖÐÓÅÐãµÄͬѧͨ¹ýԤѡÈüµÄ¸ÅÂÊΪ$\frac{2}{3}$£¬ÏÖÔÚ»·±£²âÊÔÖÐÓÅÐãµÄͬѧÖÐÑ¡3È˲μÓԤѡÈü£¬ÈôËæ»ú±äÁ¿X±íʾÕâ3ÈËÖÐͨ¹ýԤѡÈüµÄÈËÊý£¬ÇóXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®
¸½£ºK2=$\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
| P£¨K2¡Ýk£© | 0.500 | 0.400 | 0.100 | 0.010 | 0.001 |
| k | 0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
·ÖÎö £¨¢ñ£©ÓÉÌâÒâÇó³öK2£¬Óɴ˵õ½ÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶ÊÇ·ñÓÅÐãÓëÐÔ±ðÓйأ®
£¨II£©ÓÉÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍE£¨X£©£®
½â´ð ½â£º£¨I£©ÓÉÌâÒ⣺${K^2}=\frac{{110{{£¨40¡Á30-20¡Á20£©}^2}}}{60¡Á50¡Á60¡Á50}$K2¡Ö7.822K2¡Ö7.822£¾6.635£¬
¡àÓÐ99%µÄ°ÑÎÕÈÏΪ»·±£ÖªÊ¶ÊÇ·ñÓÅÐãÓëÐÔ±ðÓйأ®
£¨II£©ÓÉÌâÒâXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
$P£¨X=0£©={£¨\frac{1}{3}£©^3}=\frac{1}{27}$£¬
$P£¨X=1£©=C_3^1£¨\frac{2}{3}£©{£¨\frac{1}{3}£©^2}=\frac{2}{9}$£¬
$P£¨X=2£©=C_3^2£¨\frac{1}{3}£©{£¨\frac{2}{3}£©^2}=\frac{4}{9}$£¬
$P£¨X=3£©={£¨\frac{2}{3}£©^3}=\frac{8}{27}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{27}$ | $\frac{2}{9}$ | $\frac{4}{9}$ | $\frac{8}{27}$ |
µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍÖ®Ò»£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
8£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ÃüÌâ¡°Èôsinx=siny£¬Ôòx=y¡±µÄÄæ·ñÃüÌâÎªÕæÃüÌâ | |
| B£® | ¡°x=-1¡±ÊÇ¡°x2-5x-6=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ | |
| C£® | ÃüÌâ¡°?x¡ÊR£¬x2+x+1£¼0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬x2+x+1£¼0¡± | |
| D£® | ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ¡°Èôx2¡Ù1£¬Ôòx¡Ù1¡± |
10£®Ò»¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬´Ë¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | $\frac{¦Ð}{12}$a3 | B£® | $\frac{¦Ð}{8}$a3 | C£® | $\frac{¦Ð}{4}$a3 | D£® | $\frac{¦Ð}{2}$a3 |