题目内容

12.已知m∈R,直线l:mx-(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0.
(1)求直线l的斜率的取值范围;
(2)直线l能否将圆C分割成弦长的比值为1:2的两段圆弧?若能,求出直线l的方程;若不能,请说明理由.

分析 (1)写出直线的斜率利用判别式求最值;
(2)直线与圆相交,注意半径、弦心距、弦长的一半构成的直角三角形,确定圆C截直线l所得的弦所对的圆心角小于$\frac{2π}{3}$,即可得出结论.

解答 解:(1)直线l的方程可化为y=$\frac{m}{{m}^{2}+1}$x-$\frac{4m}{{m}^{2}+1}$,斜率k=$\frac{m}{{m}^{2}+1}$,
即km2-m+k=0,k=0时,m=0成立;
又∵△≥0,∴1-4k2≥0,
所以,斜率k的取值范围是[-$\frac{1}{2}$,$\frac{1}{2}$].
(2)不能.由(1)知l的方程为y=k(x-4),其中|k|≤$\frac{1}{2}$;
圆C的圆心为C(4,-2),半径r=2;圆心C到直线l的距离d=$\frac{2}{\sqrt{1+{k}^{2}}}$
由|k|≤$\frac{1}{2}$,得d≥$\frac{4}{\sqrt{5}}$>1,即d>$\frac{r}{2}$,
从而,若l与圆C相交,则圆C截直线l所得的弦所对的圆心角小于$\frac{2π}{3}$,
所以l不能将圆C分割成弧长的比值为1:2的两段弧.

点评 本题考查直线与圆及不等式知识的综合应用,考查点到直线的距离公式,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网