题目内容
15.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05,对此,四名同学作出了以下的判断:p:有95%的把握认为“能起到预防感冒的作用”;
q:如果某人未使用该血清,那么他在一年中有95%的可能性得感冒:
r:这种血清预防感冒的有效率为95%;
s:这种血清预防感冒的有效率为5%.
则下列结论中,正确结论的序号是(1)(4).
(1)p∧¬q;(2)¬p∧q;(3)r∨s;(4)p∧¬r.
分析 利用独立性检验原理、复合命题的判定方法即可判断出结论.
解答 解:由题意,K2≈3.918,P(K2≥3.841)≈0.05,
所以只有第一位同学判断正确.即有95%的把握认为“这种血清能起到预防感冒的作用”.
由真值表知(1),(4)为真命题.
故答案为:(1)(4).
点评 本题考查了独立性检验原理、复合命题的判定方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
5.为调查了解某高等院校毕业生参加T作后,从事的T作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如表:
(1)能否在犯错误的概率不超过5%的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关”?
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
(2)求这80位毕业生从事的工作与大学所学专业对口的频率,并估计该校近3年毕业的2000名大学生中从事的工作与大学所学专业对口的人数;
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.
| 专业对口 | 专业不对口 | 合计 | |
| 男 | 30 | 10 | 40 |
| 女 | 35 | 5 | 40 |
| 合计 | 65 | 15 | 80 |
参考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(n=a+b+c+d).
附表:
| P(K) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.306 | 3.841 | 5.021 | 6.635 |
(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.
3.双曲线2x2-y2=8的实轴长是( )
| A. | 2 | B. | 2$\sqrt{2}$ | C. | 4 | D. | 4$\sqrt{2}$ |
10.设M,N为两个随机事件,如果M,N为互斥事件($\overline{M}$,$\overline{N}$表示M,N的对立事件),那么( )
| A. | $\overline{M}$∪$\overline{N}$是必然事件 | B. | M∪N是必然事件 | ||
| C. | $\overline{M}$∩$\overline{N}$=∅ | D. | $\overline{M}$与$\overline{N}$一定不为互斥事件 |
5.已知点M的直角坐标为 ( $\sqrt{3}$,-1)则它的极坐标可以是( )
| A. | ( 2,$\frac{2π}{3}$ ) | B. | ( 2,$\frac{5π}{6}$ ) | C. | (2,$\frac{5π}{3}$) | D. | ( 2,$\frac{11π}{6}$ ) |