题目内容

已知向量
a
=(
3
,2),
b
=(sin2ωx,-cos2ωx),(ω>0).
(Ⅰ)若f(x)=
a
b
,且f(x)的最小正周期为π,求f(x)的最大值,并求f(x)取得最大值时x的集合;
(Ⅱ)在(1)的条件下,求函数f(x)的单调减区间.
考点:三角函数中的恒等变换应用,平面向量数量积的运算
专题:三角函数的图像与性质
分析:(Ⅰ)根据题意表示出函数的解析式,并利用两角和公式和二倍角公式对函数解析式化简,利用三角函数周期公式求得ω,得到函数解析式,令2sin(2x-
π
6
)=1求得x的集合,进而求得函数的最大值.
(Ⅱ)令2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
求得x的范围即函数的单调减区间.
解答: 解:(Ⅰ)f(x)=
a
b
=
3
sin2ωx-2cos2ωx=
3
sin2ωx-cos2x-1=2sin(2ωx-
π
6
)-1,
T=
=π,
∴ω=1,
∴f(x)=2sin(2x-
π
6
)-1,
令2sin(2x-
π
6
)=1,即sin(2x-
π
6
)=
1
2

2x-
π
6
=2kπ+
π
6
或2x-
π
6
=2kπ+
6
,k∈Z,
即x=kπ+
π
6
或x=kπ+
π
2
,k∈Z,
∴当x=kπ+
π
6
或x=kπ+
π
2
(k∈Z)时,函数取得最大值1.
(Ⅱ)令2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈Z,
求得kπ+
π
3
≤x≤kπ+
12
,k∈Z,
∴函数的单调减区间为[kπ+
π
3
,kπ+
12
](k∈Z).
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.在解决三角函数的单调区间问题时常结合三角函数的图象来解决.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网