题目内容
某单位建造一间背面靠墙的仓库,已知仓库地面面积为27平方米,仓库正面每平方米的造价为1500元,仓库侧面每平方米的造价为1000元,仓库顶的造价为6400元,如果墙高3米,且不计房屋背面和地面的费用,问怎样设计总造价最低?最低造价是多少?
考点:基本不等式在最值问题中的应用
专题:应用题,不等式的解法及应用
分析:设底面的长为xm,宽ym,则y=
m.设房屋总造价为f(x),由题意可得f(x)=3x•1500+3×
×1000×2+6400,利用基本不等式即可得出.
| 27 |
| x |
| 27 |
| x |
解答:
解:如图所示,
设底面的长为xm,宽ym,则y=
m.
设房屋总造价为f(x),
由题意可得f(x)=3x•1500+3×
×1000×2+6400
=4500x+
×1000+6400≥2
=2700
当且仅当4500x+
×1000,即x=6时取等号.
答:当底面的长宽分别为6m,4.5m时,可使房屋总造价最低,总造价是2700
元.
| 27 |
| x |
设房屋总造价为f(x),
由题意可得f(x)=3x•1500+3×
| 27 |
| x |
=4500x+
| 27×6 |
| x |
4500x•
|
| 10 |
当且仅当4500x+
| 27×6 |
| x |
答:当底面的长宽分别为6m,4.5m时,可使房屋总造价最低,总造价是2700
| 10 |
点评:本题考查的知识点是函数模型的选择与应用,函数的值域,其中根据已知条件构造房屋总造价的函数解析式,将实际问题转化为函数的最值问题是解答本题的关键.
练习册系列答案
相关题目
| A、45 | B、50 | C、55 | D、60 |
下列说法不正确的是( )
| A、一个命题与它的逆命题、否命题、逆否命题等四种命题中真命题个数为偶数 | ||||||||
| B、命题:“若xy=0,则x=0或y=0”的逆否命题是“若x≠0或y≠0,则xy≠0” | ||||||||
C、椭圆
| ||||||||
D、已知两条直线l1:ax+3y-1=0,l2:x+by+1=0,则l1⊥l2的充分不必要条件是
|