题目内容
16.若指数函数y=(2a-1)x在R上为单调递减函数,则a的取值范围是( )| A. | (0,1) | B. | ($\frac{1}{2}$,+∞) | C. | ($\frac{1}{2}$,+1) | D. | (1,+∞) |
分析 由指数函数的单调性和条件列出不等式,求出a的取值范围.
解答 解:因为y=(2a-1)x在R上为单调递减函数,
所以0<2a-1<1,解得$\frac{1}{2}$<a<1,
则a的取值范围是($\frac{1}{2}$,1),
故选:C.
点评 本题考查指数函数的单调性的应用,属于基础题.
练习册系列答案
相关题目
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个顶点与抛物线y2=4x的焦点重合,且双曲线的离心率等于$\sqrt{5}$,则该双曲线的方程为( )
| A. | $\frac{{x}^{2}}{4}$-y2=1 | B. | x2-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 | D. | 5x2-$\frac{5{y}^{2}}{4}$=1 |
11.已知直线l:y=kx+b,曲线C:x2+y2-2x=0,则“k+b=0”是“直线l与曲线C有公共点”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
1.直线x=t分别与函数f(x)=ex+1的图象及g(x)=2x-1的图象相交于点A和点B,则|AB|的最小值为( )
| A. | 2 | B. | 3 | C. | 4-2ln2 | D. | 3-2ln2 |
8.设向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(1,1),$\overrightarrow c$=$\overrightarrow a$+k$\overrightarrow b$,若$\overrightarrow b$⊥$\overrightarrow c$,则实数k的值等于( )
| A. | $-\frac{3}{2}$ | B. | $-\frac{5}{3}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{3}$ |
5.抛物线y2=6x的准线方程是( )
| A. | x=3 | B. | x=-3 | C. | x=$\frac{3}{2}$ | D. | x=-$\frac{3}{2}$ |
6.${(\;{x^2}-\frac{1}{2x}\;)^6}$的展开式中,常数项等于( )
| A. | $-\frac{5}{4}$ | B. | $\frac{5}{4}$ | C. | $-\frac{15}{16}$ | D. | $\frac{15}{16}$ |