题目内容

3.在△ABC中,A=60°,b=1,这个三角形的面积为$\sqrt{3}$,则sin C的值为(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}}}{8}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{3}}}{2}$

分析 由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算得解sinC.

解答 解:在△ABC中,∵A=60°,b=1,这个三角形的面积为$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,
∴c=4,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+16-2×1×4×\frac{1}{2}}$=$\sqrt{13}$,
∴sinC=$\frac{c•sinA}{a}$=$\frac{4×\frac{\sqrt{3}}{2}}{\sqrt{13}}$=$\frac{2\sqrt{39}}{13}$.
故选:C.

点评 本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网