题目内容

8.在△ABC中,角A,B,C所对的边分别为a,b,c,若 c2-b2=$\sqrt{3}$ab,sinA=2$\sqrt{3}$sinB,则角C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由已知及正弦定理可得:a=2$\sqrt{3}$b,又c2-b2=$\sqrt{3}$ab,可得:c2=b2+$\sqrt{3}$ab,从而利用余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{3}}{2}$,结合范围0<C<π,即可求C的值.

解答 解:∵sinA=2$\sqrt{3}$sinB,
∴由正弦定理可得:a=2$\sqrt{3}$b,
∵c2-b2=$\sqrt{3}$ab,可得:c2=b2+$\sqrt{3}$ab,
∴由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+{b}^{2}-{b}^{2}-\sqrt{3}ab}{2ab}$=$\frac{a-\sqrt{3}b}{2b}$=$\frac{2\sqrt{3}b-\sqrt{3}b}{2b}$=$\frac{\sqrt{3}}{2}$,
∵0<C<π,
∴C=$\frac{π}{6}$.
故选:A.

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网