题目内容
求(2-3×5-1)+(4-6×5-2)+(6-9×5-3)+…+(2n-3n×5-n).
考点:数列的求和
专题:等差数列与等比数列
分析:原式=(2+4+…+2n)-(
+
+…+
),设Sn=
+
+…+
,利用“错位相减法”即可得出.对于2+4+…+2n,利用等差数列的前n项和公式即可得出.
| 3 |
| 5 |
| 6 |
| 52 |
| 3n |
| 5n |
| 3 |
| 5 |
| 6 |
| 52 |
| 3n |
| 5n |
解答:
解:原式=(2+4+…+2n)-(
+
+…+
),
设Sn=
+
+…+
,
∴
Sn=
+
+…+
+
,
∴
Sn=
+
+…+
-
=3×
-
=3×
(1-
)-
,
∴Sn=
-
-
.
∴原式=
-
+
+
.
=n+n2-
+
+
.
| 3 |
| 5 |
| 6 |
| 52 |
| 3n |
| 5n |
设Sn=
| 3 |
| 5 |
| 6 |
| 52 |
| 3n |
| 5n |
∴
| 1 |
| 5 |
| 3 |
| 52 |
| 6 |
| 53 |
| 3(n-1) |
| 5n |
| 3n |
| 5n+1 |
∴
| 4 |
| 5 |
| 3 |
| 5 |
| 3 |
| 52 |
| 3 |
| 5n |
| 3n |
| 5n+1 |
| ||||
1-
|
| 3n |
| 5n+1 |
| 1 |
| 4 |
| 1 |
| 5n |
| 3n |
| 5n+1 |
∴Sn=
| 15 |
| 16 |
| 3 |
| 16•5n-1 |
| 3n |
| 4•5n |
∴原式=
| n(2+2n) |
| 2 |
| 15 |
| 16 |
| 3 |
| 16•5n-1 |
| 3n |
| 4•5n |
=n+n2-
| 15 |
| 16 |
| 3 |
| 16•5n-1 |
| 3n |
| 4•5n |
点评:本题考查了等差数列与等比数列的前n项和公式、“错位相减法”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目