题目内容

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{3}{5}$|CD|,则双曲线离心率的取值范围为[$\frac{5}{4}$,+∞).

分析 设出双曲线的右焦点和渐近线方程,令x=c,联立方程求出A,B,C,D的坐标,结合距离关系和条件,运用离心率公式和a,b,c的关系,进行求解即可.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为(c,0),
当x=c时代入双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1得y=±$\frac{{b}^{2}}{a}$,则A(c,$\frac{{b}^{2}}{a}$),B(c,-$\frac{{b}^{2}}{a}$),
则AB=$\frac{2{b}^{2}}{a}$,
将x=c代入y=±$\frac{b}{a}$x得y=±$\frac{bc}{a}$,则C(c,$\frac{bc}{a}$),D(c,-$\frac{bc}{a}$),
则|CD|=$\frac{2bc}{a}$,
∵|AB|≥$\frac{3}{5}$|CD|,
∴$\frac{2{b}^{2}}{a}$≥$\frac{3}{5}$•$\frac{2bc}{a}$,即b≥$\frac{3}{5}$c,
则b2=c2-a2≥$\frac{9}{25}$c2
即$\frac{16}{25}$c2≥a2
则e2=$\frac{{c}^{2}}{{a}^{2}}$≥$\frac{25}{16}$,
则e≥$\frac{5}{4}$.
故答案为:[$\frac{5}{4}$,+∞).

点评 本题主要考查双曲线离心率的计算,根据方程求出交点坐标,结合距离公式进行求解是解决本题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网