题目内容

18.已知sinα+cosα=$\frac{2}{3}$,且0<α<π,则cosα-sinα=(  )
A.$\frac{2\sqrt{3}}{3}$B.-$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{14}}{3}$D.-$\frac{\sqrt{14}}{3}$

分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,可得2sinαcosα=-$\frac{5}{9}$,α为钝角,从而求得cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$ 的值.

解答 解:∵sinα+cosα=$\frac{2}{3}$,且0<α<π,∴1+2sinαcosα=$\frac{4}{9}$,∴2sinαcosα=-$\frac{5}{9}$,∴α为钝角,
∴cosα-sinα=-$\sqrt{{(cosα-sinα)}^{2}}$=-$\sqrt{1-2sinαcosα}$=-$\sqrt{1+\frac{5}{9}}$=-$\frac{\sqrt{14}}{3}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网