题目内容

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{5}}{2}$x,且与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1有公共焦点,则C的方程为(  )
A.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{10}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1

分析 求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.

解答 解:椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1的焦点坐标(±3,0),
则双曲线的焦点坐标为(±3,0),可得c=3,
双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{5}}{2}$x,
可得$\frac{b}{a}=\frac{\sqrt{5}}{2}$,即$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}=\frac{5}{4}$,可得$\frac{c}{a}$=$\frac{3}{2}$,解得a=2,b=$\sqrt{5}$,
所求的双曲线方程为:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1.
故选:B.

点评 本题考查椭圆与双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网