题目内容
13.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(3,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,则m=2.分析 利用平面向量数量积坐标运算法则和向量垂直的性质求解.
解答 解:∵向量$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$=(3,m),且$\overrightarrow{a}⊥\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=-6+3m=0,
解得m=2.
故答案为:2.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量数量积坐标运算法则和向量垂直的性质的合理运用.
练习册系列答案
相关题目
3.某个命题与自然数有关,如果当n=k(k∈N*)时该命题成立,那么可以推得n=k+1时该命题也成立.现已知n=5时该命题不成立,那么( )
| A. | n=4时该命题不成立 | |
| B. | n=6时该命题不成立 | |
| C. | n为大于5的某个自然数时该命题成立 | |
| D. | 以上答案均不对 |
4.(1+i)(2+i)=( )
| A. | 1-i | B. | 1+3i | C. | 3+i | D. | 3+3i |
1.已知全集U=R,集合A={x|x<-2或x>2},则∁UA=( )
| A. | (-2,2) | B. | (-∞,-2)∪(2,+∞) | C. | [-2,2] | D. | (-∞,-2]∪[2,+∞) |
8.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
18.已知函数f(x)=3x-($\frac{1}{3}$)x,则f(x)( )
| A. | 是奇函数,且在R上是增函数 | B. | 是偶函数,且在R上是增函数 | ||
| C. | 是奇函数,且在R上是减函数 | D. | 是偶函数,且在R上是减函数 |
5.若直线l 的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{n}$且l?α,则能使l∥α的是( )
| A. | $\overrightarrow a=(1,-1,3),\overrightarrow n=(0,3,1)$ | B. | $\overrightarrow a=(1,0,0),\overrightarrow n=(-2,0,0)$ | ||
| C. | $\overrightarrow a=(0,2,1),\overrightarrow n=(-1,0,-1)$ | D. | $\overrightarrow a=(1,3,5),\overrightarrow n=(1,0,1)$ |
2.已知复数$z=\frac{{a+{i}}}{{1+{i}}}$(a∈R)的实部为2,则$\overline z$=( )
| A. | 2+i | B. | 2-i | C. | $2-\frac{1}{2}{i}$ | D. | $2+\frac{1}{2}{i}$ |
3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1 (a>0,b>0)的一条渐近线方程为y=$\frac{\sqrt{5}}{2}$x,且与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{3}$=1有公共焦点,则C的方程为( )
| A. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{10}$=1 | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 |