题目内容
8.| A. | 4+6π | B. | 4+12π | C. | 8+6π | D. | 8+12π |
分析 根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.
解答 解:根据三视图知几何体是组合体,
下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,
圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,
∴该几何体的体积V=$\frac{1}{2}×π×{2}^{2}×3+\frac{1}{3}×3×4×2$=6π+8,
故选:B.
点评 本题考查由三视图求几何体的体积,以及几何体的体积公式,考查空间想象能力,三视图正确复原几何体是解题的关键.
练习册系列答案
相关题目
18.为检测空气质量,某市环保局随机抽取了甲、乙两地2016年20天PM2.5日平均浓度(单位:微克/立方米)监测数据,得到甲地PM2.5日平均浓度频率分布直方图和乙地PM2.5日平均浓度的频数分布表.

乙地20天PM2.5日平均浓度频数分布表
(1)根据乙地20天PM2.5日平均浓度的频率分布表,作出作出相应的频率分组直方图,并通过两个频率分布直方图比较两地PM2.5日平均浓度的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:
从乙地这20天PM2.5日平均浓度不超过40的天数中随机抽取两天,求这两天中至少有一天居民对空气质量满意度为“非常满意”的概率.
乙地20天PM2.5日平均浓度频数分布表
| PM2.5日平均浓度(微克/立方米) | [0,20] | (20,40] | (40,60] | (60,80] | (80,100] |
| 频数(天) | 2 | 3 | 4 | 6 | 5 |
(2)通过调查,该市市民对空气质量的满意度从高到低分为三个等级:
| 满意度等级 | 非常满意 | 满意 | 不满意 |
| PM2.5日平均浓度(微克/立方米) | 不超过20 | 大于20不超过60 | 超过60 |
19.把1,3,6,10,15,…这些数叫作“三角形数”,这是因为这些数目的点可以排成一个正三角形,则第15个三角形数是( )

| A. | 120 | B. | 105 | C. | 153 | D. | 91 |
3.直线l的方程为$|{\begin{array}{l}1&0&2\\ x&2&3\\ y&{-1}&2\end{array}}|=0$,则直线l的一个法向量是( )
| A. | (1,2) | B. | (2,1) | C. | (-1,2) | D. | (2,-1) |
13.已知x,y∈R,则“xy<1是“0<x<$\frac{1}{y}$”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |