题目内容
1.已知△ABC中,bcosB=ccosC,则△ABC的形状为( )| A. | 直角三角形 | B. | 等腰三角形 | ||
| C. | 等腰或直角三角形 | D. | 等边三角形 |
分析 已知等式利用正弦定理化简,再利用二倍角的正弦函数公式变形,利用正弦函数的性质得到B=C或B+C=90°,即可确定出三角形ABC的形状.
解答 解:利用正弦定理化简ccosC=bcosB,得:sinCcosC=sinBcosB,即$\frac{1}{2}$sin2C=$\frac{1}{2}$sin2B,
∴sin2C=sin2B,
∴2C=2B或2C+2B=180°,即B=C或B+C=90°,
则△ABC为等腰或直角三角形.
故选:C.
点评 此题考查了三角形形状的判断,涉及的知识有:正弦定理,正弦函数的性质,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关题目
11.如果$0<{log_{\frac{1}{2}}}x$$<{log_{\frac{1}{2}}}y$,那么( )
| A. | 0<y<x<1 | B. | 0<x<y<1 | C. | y>x>1 | D. | x>y>1 |
12.下列各组函数相等的是( )
| A. | $f(x)=\frac{{{x^2}-1}}{x-1}与g(x)=x+1$ | B. | $f(x)=1与g(x)=\frac{{\sqrt{x^2}}}{x}$ | ||
| C. | f(x)=(x-2)0与g(x)=1 | D. | $f(x)=\sqrt{x^4}与g(x)={x^2}$ |
16.已知经过点A(-2,0)和点B(1,3a)的直线l1与经过点P(0,-1)和点Q(a,-2a)的直线l2互相垂直,则实数a的值为( )
| A. | -1 | B. | 0 | C. | -1或0 | D. | 1或0 |
11.下面四组函数中,函数f(x)和g(x)表示同一函数的是( )
| A. | f(x)=$\sqrt{x-1}$•$\sqrt{x+3}$,g(x)=$\sqrt{{x}^{2}+2x-3}$ | B. | f(x)=$\frac{{x}^{2}-2x+1}{x-1}$,g(x)=x-1 | ||
| C. | f(x)=$\frac{\sqrt{1-{x}^{2}}}{|x+2|}$,g(x)=$\frac{\sqrt{1-{x}^{2}}}{x+2}$ | D. | 以上三组都不是同一函数 |