题目内容
20.若三个正数a,b,c成等比数列,其中a=5+2$\sqrt{3}$,c=5-2$\sqrt{3}$,则b=$\sqrt{13}$.分析 直接由等比中项的概念列式求解b的值.
解答 解:由a,b,c三个正数成等比数列,且a=5+2$\sqrt{3}$,c=5-2$\sqrt{3}$,
则b2=(5+2$\sqrt{3}$)(5-2$\sqrt{3}$)=13,
∴b=$\sqrt{13}$.
故答案为:$\sqrt{13}$.
点评 本题考查等比数列的基本量之间的关系,若已知等比数列的两项,则等比数列的所有量都可以求出,只要简单数字运算时不出错,问题可解.
练习册系列答案
相关题目
8.某学生四次模拟考试时,其英语作文的减分情况如下表:
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,参考公式:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi
则其回归线性方程为$\widehat{y}$=-0.7x+5.25.
| 考试次数x | 1 | 2 | 3 | 4 |
| 所减分数y | 4.5 | 4 | 3 | 2.5 |
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi
则其回归线性方程为$\widehat{y}$=-0.7x+5.25.
15.已知Sn为等差数列{an}的前n项和,若a5=7,则S9=( )
| A. | 45 | B. | 53 | C. | 63 | D. | 72 |
9.已知函数f(x)=x+x3,x1,x2,x3∈R,x1+x2>0,x2+x3>0,x3+x1>0,那么f(x1)+f(x2)+f(x3)的值( )
| A. | 一定大于0 | B. | 等于0 | C. | 一定小于0 | D. | 正负都有可能 |