题目内容
数列{an}中,a1=1,它的前n项和为Sn,且
=
+
(n≥2,n∈N*).
(Ⅰ)证明:
+
=1,并求数列{an}的通项公式;
(Ⅱ)设bn=nan,证明:对一切正整数n,有
+
+…+
<
.
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n(n+1) |
(Ⅰ)证明:
| 2Sn |
| (n+1)2 |
| 1 |
| n+1 |
(Ⅱ)设bn=nan,证明:对一切正整数n,有
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 7 |
| 4 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
=(
)2,由此利用累乘法,得
=(
)2,从而得到2Sn+(n+1)=(n+1)2,由此能证明
+
=1,并求出an=n.
(2)由bn=nan=n2,
<
=(
-
),能证明
+
+…+
<
.
| 2Sn+(n+1) |
| 2Sn-1+n-1 |
| n |
| n-1 |
| 2Sn+(n+1) |
| 2S1+2 |
| n+1 |
| 2 |
| 2Sn |
| (n+1)2 |
| 1 |
| n+1 |
(2)由bn=nan=n2,
| 1 |
| n2 |
| 1 |
| (n+1)(n-1) |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 7 |
| 4 |
解答:
(Ⅰ)证明:∵
=
+
(n≥2,n∈N*),
∴
=
+
-
,
∴
+
=
+
,
∴
=
,
∴
=(
)2,
∴
=(
)2,
…
=(
)2,
上式相乘,得
=(
)2,
又a1=S1=2,∴2Sn+(n+1)=(n+1)2,
两边同时除以(n2+1),得:
+
=1,
∵2Sn+(n+1)=(n+1)2,①
∴2Sn-1+n=n2,②
①-②,得2an+1=2n+1,解得an=n.
(2)证明:bn=nan=n2,
∵n2>(n+1)(n-1),∴
<
=(
-
),
∴
+
+…+
=
+
+
+…+
<1+
(1-
+
-
+…+
-
)
=1+
(1+
-
-
)
=1+
-
(
+
)
<
.
∴
+
+…+
<
.
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n(n+1) |
∴
| 2Sn |
| (n+1)2 |
| 2Sn-1 |
| n2 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 2Sn |
| (n+1)2 |
| 1 |
| n+1 |
| 2Sn-1 |
| n2 |
| 1 |
| n |
∴
| 2Sn+(n+1) |
| (n+1)2 |
| 2Sn-1+n |
| n2 |
∴
| 2Sn+(n+1) |
| 2Sn-1+n-1 |
| n |
| n-1 |
∴
| 2Sn-1+n |
| 2Sn-2+n-1 |
| n |
| n-1 |
…
| 2S2+3 |
| 2S1+2 |
| 3 |
| 2 |
上式相乘,得
| 2Sn+(n+1) |
| 2S1+2 |
| n+1 |
| 2 |
又a1=S1=2,∴2Sn+(n+1)=(n+1)2,
两边同时除以(n2+1),得:
| 2Sn |
| (n+1)2 |
| 1 |
| n+1 |
∵2Sn+(n+1)=(n+1)2,①
∴2Sn-1+n=n2,②
①-②,得2an+1=2n+1,解得an=n.
(2)证明:bn=nan=n2,
∵n2>(n+1)(n-1),∴
| 1 |
| n2 |
| 1 |
| (n+1)(n-1) |
| 1 |
| n-1 |
| 1 |
| n+1 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
<1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
=1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=1+
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
<
| 7 |
| 4 |
∴
| 1 |
| b1 |
| 1 |
| b2 |
| 1 |
| bn |
| 7 |
| 4 |
点评:本题考查等式的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要注意累乘法和裂项法的合理运用.
练习册系列答案
相关题目
| π |
| 2 |
A、y=2sin(
| ||||
B、y=2sin(
| ||||
C、y=2sin(
| ||||
D、y=2sin(
|