题目内容

数列{an}中,a1=1,它的前n项和为Sn,且
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n(n+1)
(n≥2,n∈N*).
(Ⅰ)证明:
2Sn
(n+1)2
+
1
n+1
=1,并求数列{an}的通项公式;
(Ⅱ)设bn=nan,证明:对一切正整数n,有
1
b1
+
1
b2
+…+
1
bn
7
4
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得
2Sn+(n+1)
2Sn-1+n-1
=(
n
n-1
)2
,由此利用累乘法,得
2Sn+(n+1)
2S1+2
=(
n+1
2
)2
,从而得到2Sn+(n+1)=(n+1)2,由此能证明
2Sn
(n+1)2
+
1
n+1
=1,并求出an=n.
(2)由bn=nan=n2
1
n2
1
(n+1)(n-1)
=(
1
n-1
-
1
n+1
),能证明
1
b1
+
1
b2
+…+
1
bn
7
4
解答: (Ⅰ)证明:∵
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n(n+1)
(n≥2,n∈N*),
2Sn
(n+1)2
=
2Sn-1
n2
+
1
n
-
1
n+1

2Sn
(n+1)2
+
1
n+1
=
2Sn-1
n2
+
1
n

2Sn+(n+1)
(n+1)2
=
2Sn-1+n
n2

2Sn+(n+1)
2Sn-1+n-1
=(
n
n-1
)2

2Sn-1+n
2Sn-2+n-1
=(
n
n-1
)2


2S2+3
2S1+2
=(
3
2
2
上式相乘,得
2Sn+(n+1)
2S1+2
=(
n+1
2
)2

又a1=S1=2,∴2Sn+(n+1)=(n+1)2
两边同时除以(n2+1),得:
2Sn
(n+1)2
+
1
n+1
=1,
2Sn+(n+1)=(n+1)2,①
2Sn-1+n=n2,②
①-②,得2an+1=2n+1,解得an=n.
(2)证明:bn=nan=n2
∵n2>(n+1)(n-1),∴
1
n2
1
(n+1)(n-1)
=(
1
n-1
-
1
n+1
),
1
b1
+
1
b2
+…+
1
bn
=
1
12
+
1
22
+
1
32
+…+
1
n2

<1+
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n-1
-
1
n+1

=1+
1
2
(1+
1
2
-
1
n
-
1
n+1
)

=1+
3
4
-
1
2
(
1
n
+
1
n+1
)

7
4

1
b1
+
1
b2
+…+
1
bn
7
4
点评:本题考查等式的证明,考查数列的通项公式的求法,考查不等式的证明,解题时要注意累乘法和裂项法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网