题目内容

7.如图所示,已知线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段DD′⊥α于D′,如果∠DBD=30°,AB=AC=BD=1,则CD的长为2.

分析 通过向量表示出CD向量,然后求模即可得到结果.

解答 解:线段AB在平面α内,线段AC⊥α,线段BD⊥AB,线段DD′⊥α,∠DBD′=30°,AB=AC=BD=1,
由题意可知:$\overrightarrow{CD}$=$\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD}$,
∴${\overrightarrow{CD}}^{2}$=$(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BD})^{2}$=${\overrightarrow{CA}}^{2}+{\overrightarrow{AB}}^{2}+{\overrightarrow{BD}}^{2}$+$2\overrightarrow{CA}•\overrightarrow{AB}$+$2\overrightarrow{CA}•\overrightarrow{BD}$+$2\overrightarrow{AB}•\overrightarrow{BD}$
=12+12+12+2•12cos60°
=4.
∴所求C、D间的距离为:2.
故答案为2.

点评 本题考查空间向量求解两点间距离的方法之一,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网