题目内容

8.已知a∈(0,+∞),不等式x+$\frac{1}{x}$≥2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,可推广为x+$\frac{a}{{x}^{n}}$≥n+1,则a的值为(  )
A.2nB.n2C.22(n-1)D.nn

分析 分别分析各个不等式的特点,归纳出a的值.

解答 解:第一个不等式的a=1,第二个不等式的a=4=22,第三个不等式的a=27=32
则由归纳推理可知,第n个不等式的a=nn
故选D.

点评 本题考查了归纳推理、分析能力,认真观察各式,根据所给式子的结构特点的变化情况总结规律是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网