题目内容
设数列{an}的前n项和为Sn,且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
(1)若{an}是等差数列,求{an}的通项公式;
(2)若a1=1,
①当a2=1时,试求S100;
②若数列{an}为递增数列,且S3k=225,试求满足条件的所有正整数k的值.
(1)若{an}是等差数列,求{an}的通项公式;
(2)若a1=1,
①当a2=1时,试求S100;
②若数列{an}为递增数列,且S3k=225,试求满足条件的所有正整数k的值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得a1+(2a1+d)+(3a1+3d)=3×22+2,(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,由此能求出an=2n-1.
(2)由已知得an+an+1+an+2=6n+3,n≥2,n∈N+),由此能求出S100.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,得
,an+2-an-1=6,n≥3,n∈N+,由数列{an}为递增数列,得
<x<
,由此利用已知条件能求出满足条件的所有正整数k的值.
(2)由已知得an+an+1+an+2=6n+3,n≥2,n∈N+),由此能求出S100.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,得
|
| 7 |
| 3 |
| 11 |
| 3 |
解答:
解:(1)∵数列{an}是等差数列,
且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴a1+(2a1+d)+(3a1+3d)=3×22+2,①
(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,②
联立①②,得:a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+),
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=1+6×
(2+98)+3×33
=10000.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,
得
,
∴
,
∴
,
又Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+,
an-1+an+an+1=6n-3,n≥3,n∈N+,
∴an+2-an-1=6,n≥3,n∈N+,
∴a4=x+6,
∵数列{an}为递增数列,
∴a1<a2<a3<a4<a5,解得
<x<
,
由S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a2k-2+a2k-1+a2k)
=12-x+
[6•4+3+6(3k-2)+3](k-1)
=9k2-x+3=225,
∴9k2-222∈(
,
),
解得k=5.
且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴a1+(2a1+d)+(3a1+3d)=3×22+2,①
(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,②
联立①②,得:a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+),
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100)
=1+6×
| 33 |
| 2 |
=10000.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,
得
|
∴
|
∴
|
又Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+,
an-1+an+an+1=6n-3,n≥3,n∈N+,
∴an+2-an-1=6,n≥3,n∈N+,
∴a4=x+6,
∵数列{an}为递增数列,
∴a1<a2<a3<a4<a5,解得
| 7 |
| 3 |
| 11 |
| 3 |
由S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a2k-2+a2k-1+a2k)
=12-x+
| 1 |
| 2 |
=9k2-x+3=225,
∴9k2-222∈(
| 7 |
| 3 |
| 11 |
| 3 |
解得k=5.
点评:本题考查数列的通项公式的求法,考查数列的前100项和的求法,考查正整数值的求法,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
若函数y=f(x)的值域是[
,3],则函数g(x)=f(x)+
的值域是( )
| 1 |
| 2 |
| 2 |
| f(x) |
A、[
| ||||
B、[2
| ||||
C、[2
| ||||
D、[
|
已知复数z=1+i+i2+i3+…+i2015,则化简得z=( )
| A、0 | B、-1 | C、1 | D、1+i |
已知f(x)是一次函数,若f(0)=1,f(2x)=f(x)+x,则f(x)=( )
| A、2x+1 | B、x+1 |
| C、x | D、2x |
若变量x,y满足约束条件
,则z=x+2y的最小值为( )
|
| A、-6 | B、2 | C、3 | D、4 |
设角θ为第四象限角,并且角θ的终边与单位圆交于点P(x0,y0),若x0+y0=-
,则cos2θ=( )
| 1 |
| 3 |
A、-
| ||||
B、±
| ||||
C、±
| ||||
D、-
|