题目内容

设数列{an}的前n项和为Sn,且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
(1)若{an}是等差数列,求{an}的通项公式;
(2)若a1=1,
①当a2=1时,试求S100
②若数列{an}为递增数列,且S3k=225,试求满足条件的所有正整数k的值.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知得a1+(2a1+d)+(3a1+3d)=3×22+2,(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,由此能求出an=2n-1.
(2)由已知得an+an+1+an+2=6n+3,n≥2,n∈N+),由此能求出S100
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,得
a3=11-2x
a1=x+4
,an+2-an-1=6,n≥3,n∈N+,由数列{an}为递增数列,得
7
3
<x<
11
3
,由此利用已知条件能求出满足条件的所有正整数k的值.
解答: 解:(1)∵数列{an}是等差数列,
且Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
a1+(2a1+d)+(3a1+3d)=3×22+2,①
(2a1+d)+(3a1+3d)+(4a1+6d)=3×32+2,②
联立①②,得:a1=1,d=2,
∴an=1+(n-1)×2=2n-1.
(2)∵Sn-1+Sn+Sn+1=3n2+2(n≥2,n∈N+),
∴Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+),
∴S100=a1+(a2+a3+a4)+(a5+a6+a7)+…+(a98+a99+a100
=1+6×
33
2
(2+98)+3×33

=10000.
(3)设a2=x,由Sn-1+Sn+Sn+1=3n2+2,
S1+S2+S3=14
S2+S3+S4=29

3a1+2a2+a3=14
3a1+3a2+2a3+a4=29

a3=11-2x
a4=x+4

又Sn+Sn+1+Sn+2=3(n+1)2+2(n≥2,n∈N+),
∴an+an+1+an+2=6n+3,n≥2,n∈N+
an-1+an+an+1=6n-3,n≥3,n∈N+
∴an+2-an-1=6,n≥3,n∈N+
∴a4=x+6,
∵数列{an}为递增数列,
∴a1<a2<a3<a4<a5,解得
7
3
<x<
11
3

由S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a2k-2+a2k-1+a2k
=12-x+
1
2
[6•4+3+6(3k-2)+3](k-1)

=9k2-x+3=225,
∴9k2-222∈(
7
3
11
3
),
解得k=5.
点评:本题考查数列的通项公式的求法,考查数列的前100项和的求法,考查正整数值的求法,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网