题目内容

20.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟到达N处后,又测得灯塔在货轮的北偏东45°,则货轮的速度为(  )
A.$20(\sqrt{3}+\sqrt{6})$海里/时B.$20(\sqrt{6}-\sqrt{3})$海里/时C.$20(\sqrt{2}+\sqrt{6})$海里/时D.$20(\sqrt{6}-\sqrt{2})$海里/时

分析 根据题意画出相应的图形,在三角形PMN中,根据sin∠MPN与sin∠PNM的值,以及PM的长,利用正弦定理求出MN的长,除以时间即可确定出速度.

解答 解:由题意知PM=20海里,∠PMB=15°,∠BMN=30°,∠PNC=45°,
∴∠NMP=45°,∠MNA=90°-∠BMN=60°,
∴∠PNM=105°,
∴∠MPN=30°,
∵sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
∴在△MNP中利用正弦定理可得MN=$\frac{20sin30°}{sin105°}$=10($\sqrt{6}$-$\sqrt{2}$)海里,
∴货轮航行的速度v=$\frac{10(\sqrt{6}-\sqrt{2})}{\frac{1}{2}}$=20($\sqrt{6}$-$\sqrt{2}$))海里/小时.
故选D.

点评 此题考查了正弦定理在解三角形中的应用,解决实际问题的关键是要把实际问题转化为数学问题,然后利用数学知识进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网