题目内容
已知数列{an}满足a1=
,an-1+1=2an(n≥2,n∈N).
(1)证明数列{an-1}是等比数列,并求an;
(2)若数列{bn}满足:2b1+22b2+…2nbn=n•2n,求数列{bn}的通项公式;
(3)令cn=-2an•bn+(n+1)(n∈N*),求数列{cn}的前n项和Tn.
| 1 |
| 2 |
(1)证明数列{an-1}是等比数列,并求an;
(2)若数列{bn}满足:2b1+22b2+…2nbn=n•2n,求数列{bn}的通项公式;
(3)令cn=-2an•bn+(n+1)(n∈N*),求数列{cn}的前n项和Tn.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由已知条件推导出
=
,n≥2,所以{an-1}是等比数列,公比是
,由此能求出an=1-(
)n.
(2)由已知条件推导出2nbn=(n+1)•2n-1,n≥2,由此能求出bn=
.
(3)cn=-2an•bn+(n+1)=(n+1)•[(
)n-1]+(n+1)=(n+1)•(
)n,利用错位相减法能求出数列{cn}的前n项和Tn.
| an-1 |
| an-1-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)由已知条件推导出2nbn=(n+1)•2n-1,n≥2,由此能求出bn=
| n+1 |
| 2 |
(3)cn=-2an•bn+(n+1)=(n+1)•[(
| 1 |
| 2 |
| 1 |
| 2 |
解答:
(1)证明:∵数列{an}满足a1=
,an-1+1=2an(n≥2,n∈N),
∴2(an-1)=an-1-1,n≥2,
=
,n≥2,
∴{an-1}是等比数列,公比是
,(2分)
又∵{an-1}是等比数列,公比是
,
a1-1=
,
∴an-1=-
×(
)n-1,∴an=1-(
)n.(4分)
(2)解:∵数列{bn}满足:2b1+22b2+…2nbn=n•2n,①
∴2b1+22b2+…2n-1bn-1=(n-1)•2n-1,n≥2,②(5分)
①-②,得2nbn=(n+1)•2n-1,n≥2,
∴bn=
,n≥2,(7分)
又当n=1时,2b1=2,b1=1也满足上式,
∴bn=
.(8分)
(3)解:∵an=1-(
)n,bn=
,
∴cn=-2an•bn+(n+1)=(n+1)•[(
)n-1]+(n+1)=(n+1)•(
)n,(9分)Tn=2×(
)1+3×(
)2+4×(
)3+…+(n+1)•(
)n③
Tn=2×(
)2+3×(
)3+…+n×(
)n+(n+1)•(
)n+1④
③-④得:
Tn=
+(
)2+(
)3+…+(
)n-(n+1)•(
)n+1,(12分)
Tn=
-(n+1)•(
)n+1,(13分)
即
Tn=1-(
)n-(n+1)•(
)n+1,
∴Tn=2-(n+3)•(
)n.(14分)
| 1 |
| 2 |
∴2(an-1)=an-1-1,n≥2,
| an-1 |
| an-1-1 |
| 1 |
| 2 |
∴{an-1}是等比数列,公比是
| 1 |
| 2 |
又∵{an-1}是等比数列,公比是
| 1 |
| 2 |
a1-1=
| 1 |
| 2 |
∴an-1=-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(2)解:∵数列{bn}满足:2b1+22b2+…2nbn=n•2n,①
∴2b1+22b2+…2n-1bn-1=(n-1)•2n-1,n≥2,②(5分)
①-②,得2nbn=(n+1)•2n-1,n≥2,
∴bn=
| n+1 |
| 2 |
又当n=1时,2b1=2,b1=1也满足上式,
∴bn=
| n+1 |
| 2 |
(3)解:∵an=1-(
| 1 |
| 2 |
| n+1 |
| 2 |
∴cn=-2an•bn+(n+1)=(n+1)•[(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
③-④得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||||
1-
|
| 1 |
| 2 |
即
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴Tn=2-(n+3)•(
| 1 |
| 2 |
点评:本题考查数列的通项公式的求法,考查等比数列的证明,考查数列的前n项和的求法,解题时要注意错位相减法的合理运用.
练习册系列答案
相关题目
已知点A(0,1,2),B(2,3,4),|AB|=( )
A、2
| ||
B、3
| ||
C、
| ||
| D、12 |
设
n =
,n∈N*,则n的最小值为( )
|
|
| A、3 | B、6 | C、9 | D、12 |