题目内容

9.已知实数x满足9x-4×3x+1+27≤0且f(x)=(log2$\frac{x}{2}$)(log${\;}_{\sqrt{2}}$$\frac{\sqrt{x}}{2}$).
(Ⅰ)求实数x的取值范围;
(Ⅱ)求f(x)的最大值和最小值,并求此时x的值.

分析 (1)转化为二次不等式求解即可.
(2)根据对数的运算法则,化简f(x),转化为二次函数求解值域.

解答 解:(1)实数x满足9x-4×3x+1+27≤0,
化解可得:(3x2-12•3x+27≤0,
即(3x-3)(3x-9)≤0,
得3≤3x≤9,
∴1≤x≤2,
故得x的取值范围为[1,2];
(2)f(x)=(log2$\frac{x}{2}$)(log${\;}_{\sqrt{2}}$$\frac{\sqrt{x}}{2}$).
化解可得:f(x)=(log2x-log22)($2lo{g}_{2}\frac{\sqrt{x}}{2}$)
=(log2x-log22)(log2x-log24)
=(log2x-1)(log2x-2)
=($lo{g}_{2}x-\frac{3}{2}$)2-$\frac{1}{4}$
∵x∈[1,2],
∴log2x∈[0,1],
∴0≤=($lo{g}_{2}x-\frac{3}{2}$)2-$\frac{1}{4}$≤2.
∴当x=2时,f(x)有最小值0,当x=1时,f(x)有最大值2.

点评 本题考查了指数的运算和对数的运算,转化思想,利用二次函数的配方求解最值问题.属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网