题目内容
17.已知函数f(x)为定义在R上的奇函数,且f(x)在[0,+∞)上单调递增,若f(a)<f(2a-1),则a的取值范围是( )| A. | (-∞,1) | B. | (-∞,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,1) | D. | (1,+∞) |
分析 根据函数是奇函数,且在[0,+∞)单调递增,得到函数在R上单调递增,利用函数的单调性解不等式即可得到结论.
解答 解:∵f(x)是定义在R上的奇函数,且在[0,+∞)单调递增,
∴函数在R上单调递增,
若f(a)<f(2a-1),则a<2a-1,
解得:a∈(1,+∞),
故选:D
点评 本题重点考查函数的奇偶性、单调性,考查解抽象不等式,解题的关键是利用函数的性质化抽象不等式为具体不等式.
练习册系列答案
相关题目
12.已知2sinxtanx=3,(-π<x<0),则x=( )
| A. | $-\frac{π}{3}$ | B. | $-\frac{π}{6}$ | C. | $-\frac{5π}{6}$ | D. | $-\frac{2π}{3}$ |
2.定义运算$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,则符合条件$|\begin{array}{l}{1}&{-1}\\{z}&{zi}\end{array}|$=4+2i的复数z的共轭复数$\overline{z}$为( )
| A. | 3-i | B. | 1+3i | C. | 3+i | D. | 1-3i |
7.各项都是正数的等比数列{an}的公比q≠1,a3,a5,a6成等差数列,则$\frac{{{a_3}+{a_4}}}{{{a_4}+{a_5}}}$=( )
| A. | $\frac{{-1+\sqrt{3}}}{2}$ | B. | $\frac{{-1+\sqrt{5}}}{2}$ | C. | $\frac{{1+\sqrt{5}}}{2}$ | D. | $2+\sqrt{5}$ |