题目内容

18.如图,在三棱锥S-ABC中,△ABC为直角三角形,且∠ACB=90°,SA⊥平面ABC,AD⊥SC.
求证:AD⊥平面SBC.

分析 要证线面垂直,关键要找到两条相交直线与之都垂直,先由线面垂直得线线垂直,然后利用线面垂直的判定得线面垂直继而得到线线垂直AD⊥BC,问题从而得证.

解答 证明:∵∠ACB=90°,
∴BC⊥AC.
又SA⊥面ABC,
∴SA⊥BC,
∴BC⊥面SAC,
∴BC⊥AD.
又SC⊥AD,SC∩BC=C,
∴AD⊥面SBC.

点评 本题考查了线面垂直的判定和线面垂直的定义的应用,考查了学生灵活进行垂直关系的转化,是个基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网