题目内容

8.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若有且只有一个整数x0使得f(x0)≤0,则a的取值范围是(  )
A.$(\frac{2}{e},\frac{3}{4})$B.$[\frac{2}{e},\frac{3}{4})$C.$(\frac{2}{e},1)$D.$[\frac{2}{e},1)$

分析 设g(x)=ex(3x-1),h(x)=ax-a,对g(x)求导,将问题转化为存在唯一的整数x0使得g(x0)在直线h(x)=ax-a的下方,求导数可得函数的极值,解g(-1)-h(-1)=-4e-1+2a≥0,求得a的取值范围.

解答 解:设g(x)=ex(3x-1),h(x)=ax-a,
则g′(x)=ex(3x+2),
∴x∈(-∞,-$\frac{2}{3}$),g′(x)<0,g(x)单调递减,
x∈(-$\frac{2}{3}$,+∞),g′(x)>0,g(x)单调递增,
∴x=-$\frac{2}{3}$,取最小值-3e-$\frac{2}{3}$,
∴g(0)=-1<-a=h(0),
g(1)-h(1)=2e>0,
直线h(x)=ax-a恒过定点(1,0)且斜率为a,
∴g(-1)-h(-1)=-4e-1+2a>0,
∴a>$\frac{2}{e}$,
a<1,
∴a的取值范围($\frac{2}{e}$,1).
故选:C.

点评 本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网