题目内容

3.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2=4ac,三角形的面积为$S=\frac{{\sqrt{3}}}{2}accosB$,则sinAsinC的值为$\frac{1}{4}$.

分析 由已知及三角形面积公式可求tanB=$\sqrt{3}$,结合范围0<B<π,可求B=$\frac{π}{3}$,由已知及余弦定理可求b2=3ac.由正弦定理可得sin2B=3sinAsinC,从而得解sinAsinC的值.

解答 解:在三角形ABC中,$S=\frac{{\sqrt{3}}}{2}accosB$=$\frac{1}{2}$acsinB,
∴tanB=$\sqrt{3}$,
∵B为三角形内角,
∴0<B<π,
∴B=$\frac{π}{3}$.
∵a2+c2=4ac,
又∵a2+c2=b2+2accosB,
∴b2+2accosB=4ac,
∴b2=3ac.
由正弦定理可得sin2B=3sinAsinC,
∴sinAsinC=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网