题目内容

15.在平面直角坐标系xOy中,已知△ABC的顶点A(0,4),C(0,-4),顶点B在椭圆$\frac{x^2}{9}+\frac{y^2}{25}=1$上,则$\frac{sin(A+C)}{sinA+sinC}$=(  )
A.$\frac{3}{5}$B.$\frac{5}{3}$C.$\frac{4}{5}$D.$\frac{5}{4}$

分析 首先根据所给的椭圆的方程写出椭圆的长轴的长,两个焦点之间的距离,根据正弦定理得到角的正弦值之比就等于边长之比,把边长代入,得到比值

解答 解:∵△ABC的顶点A(0,4),C(0,-4),顶点B在椭圆$\frac{x^2}{9}+\frac{y^2}{25}=1$上∴a=2,即AB+CB=2a,AC=2c
∵由正弦定理知$\frac{sinB}{sinA+sinC}=\frac{AC}{BC+AB}=\frac{2c}{2a}=\frac{c}{a}=\frac{4}{5}$,∴则$\frac{sin(A+C)}{sinA+sinC}$=$\frac{4}{5}$.
故选:C.

点评 本题考查椭圆的性质和正弦定理的应用,解题的关键是把角的正弦值之比写成边长之比,进而和椭圆的参数结合起来.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网