题目内容
若x,y满足约束条件
,则z=x+y的最大值为 .
|
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.
解答:
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点B时,直线y=-x+z的截距最大,
此时z最大.
由
,解得
,即B(1,3),
代入目标函数z=x+y得z=1+3=4.
即目标函数z=x+y的最大值为4.
故答案为:4.
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点B时,直线y=-x+z的截距最大,
此时z最大.
由
|
|
代入目标函数z=x+y得z=1+3=4.
即目标函数z=x+y的最大值为4.
故答案为:4.
点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.
练习册系列答案
相关题目
曲线y=ex+1在点A(0,1)处的切线斜率为( )
| A、1 | ||
| B、2 | ||
| C、e | ||
D、
|