题目内容

已知数列{an}和{bn}满足,a1=1,a2=2,an>0,bn=
anan+1
(n∈N+),且{bn}是以q为公比的等比数列
(1)求,an+2=anq2
(2)设cn=a2n-1+2a2n,试判断数列{cn}是否为等比数列,说明理由
(3)求和,S2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)直接由{bn}是以q为公比的等比数列结合bn=
anan+1
加以证明;
(2)由an+2=anq2分别写出a2n-1、2a2n,得到cn=a2n-1+2a2n后即可判断数列{cn}是等比数列;
(3)由(2)求得
1
a2n-1
=
1
a1
q2-2n
1
a2n
=
1
a2
q2-2n
,代入S2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n
后分组,然后利用等比数列的前n项和得答案.
解答: (1)证明:由
bn+1
bn
=q
,有
an+1an+2
anan+1
=
an+2
an
=q
,∴an+2=anq2(n∈N+);
(2)解:{cn}是首项为5,以q2为公比的等比数列.
证明:∵an=qn-2q2
∴a2n-1=a2n-3q2=…=a1q2n-2
a2n=a2n-2q2=…=a2qn-2
∴cn=a2n-1+2a2n=a1q2n-2+2a2q2n-2=(a1+2a2)q2n-2=5q2n-2
∴{cn}是首项为5,以q2为公比的等比数列;
(3)解:由(2)得
1
a2n-1
=
1
a1
q2-2n
1
a2n
=
1
a2
q2-2n

于是S2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n

=(
1
a1
+
1
a3
+…+
1
a2n-1
)+(
1
a2
+
1
a4
+…+
1
a2n
)

=
1
a1
(1+
1
q2
+…+
1
q2n-2
)+
1
a2
(1+
1
q2
+…+
1
q2n-2
)

=
3
2
(1+
1
q2
+…+
1
q2n-2
)

当q=1时,S2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n
=
3
2
(1+
1
q2
+…+
1
q2n-2
)
=
3
2
n

当q≠1时,S2n=
1
a1
+
1
a2
+
1
a3
+
1
a4
+…+
1
a2n-1
+
1
a2n
=
3
2
(1+
1
q2
+…+
1
q2n-2
)
=
3
2
(
1-q-2n
1-q-2
)=
3
2
[
q2n-1
q2n-2(q2-1)
]
点评:本题考查了数列递推式,考查了等比关系的确定,训练了数列的分组求和,考查了等比数列的前n项和,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网