题目内容
9.已知等差数列{an}中,a1+a3=16,则a2=( )| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
分析 利用等差数列的通项公式的性质即可得出.
解答 解:∵数列{an}是等差数列,a1+a3=16,
则a2=$\frac{{a}_{1}+{a}_{3}}{2}$=8,
故选:B.
点评 本题考查了等差数列的通项公式的性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
1.
如图,已知|AB|=10,图中的一系列圆是圆心分别为A、B的两组同心圆,每组同心圆的半径分别是1,2,3,…,n,….利用这两组同心圆可以画出以A、B为焦点的椭圆或双曲线.若其中经过点M、N的椭圆的离心率分别是eM,eN,经过点P,Q的双曲线的离心率分别是eP,eQ,则它们的大小关系是( )
| A. | eM<eN<eQ<eP | B. | eN<eM<eP<eQ | C. | eP<eQ<eM<eN | D. | eQ<eN<eM<eP |
18.用与球心距离为4的平面去截球所得的截面面积为9π,则球的表面积为( )
| A. | 36π | B. | 64π | C. | 100π | D. | 144π |
19.某校为了解甲、乙两班学生的学业水平,从两班中各随机抽取20人参加学业水平等级考试,得到学生的学业成绩茎叶图如下:

(Ⅰ)通过茎叶图比较甲、乙两班学生的学业成绩平均值$\overline{X}$甲与${\overline X_乙}$及方差$s_甲^2$与$s_乙^2$的大小;(只需写出结论)
(Ⅱ)根据学生的学业成绩,将学业水平分为三个等级:
根据所给数据,频率可以视为相应的概率.
(ⅰ)从甲、乙两班中各随机抽取1人,记事件C:“抽到的甲班学生的学业水平等级高于乙班学生的学业水平等级”,求C发生的概率;
(ⅱ)从甲班中随机抽取2人,记X为学业水平优秀的人数,求X的分布列和数学期望.
(Ⅰ)通过茎叶图比较甲、乙两班学生的学业成绩平均值$\overline{X}$甲与${\overline X_乙}$及方差$s_甲^2$与$s_乙^2$的大小;(只需写出结论)
(Ⅱ)根据学生的学业成绩,将学业水平分为三个等级:
| 学业成绩 | 低于70分 | 70分到89分 | 不低于90分 |
| 学业水平 | 一般 | 良好 | 优秀 |
(ⅰ)从甲、乙两班中各随机抽取1人,记事件C:“抽到的甲班学生的学业水平等级高于乙班学生的学业水平等级”,求C发生的概率;
(ⅱ)从甲班中随机抽取2人,记X为学业水平优秀的人数,求X的分布列和数学期望.