ÌâÄ¿ÄÚÈÝ
1£®| A£® | eM£¼eN£¼eQ£¼eP | B£® | eN£¼eM£¼eP£¼eQ | C£® | eP£¼eQ£¼eM£¼eN | D£® | eQ£¼eN£¼eM£¼eP |
·ÖÎö ÓÉÌâÒâ¿ÉÖª£ºËùÓеÄË«ÇúÏߵĽ¹¾àÒ»¶¨Îª|AB|=10£¬¼´2c=10£¬c=5£¬ÓÉÍÖÔ²µÄ¶¨Òå·Ö±ðÇó³öeM£¬eN£¬ÓÉË«ÇúÏߵ͍Ò壬·Ö±ðÇó³öeP£¬eQ£¬ÓÉ´ËÄܱȽÏeM£¬eN£¬eP£¬eQµÄ´óС¹ØÏµ£®
½â´ð ½â£ºÓÉÌâÒâ¿ÉÖª£ºËùÓеÄË«ÇúÏߵĽ¹¾àÒ»¶¨Îª|AB|=10£¬¼´2c=10£¬c=5£¬
ÓÉÍÖÔ²µÄ¶¨Ò壺
¶Ô¹ýMµãµÄÍÖÔ²£º|PA|+|PB|=2a=3+10=13£¬
¡àa=$\frac{13}{2}$£¬${e}_{M}=\frac{5}{\frac{13}{2}}$=$\frac{10}{13}$£¬
¶Ô¹ýNµãµÄÍÖÔ²£º|PA|+|PB|=2a=5+7=12£¬
¡àa=6£¬${e}_{N}=\frac{5}{6}$£®
ÓÉË«ÇúÏߵ͍Ò壺
¶Ô¹ýPµãµÄË«ÇúÏߣº||PA|-|PB||=2a=|7-3|=4£¬
¡àa=2£¬eP=$\frac{5}{2}$£¬
¶Ô¹ýQµãµÄË«ÇúÏߣº||PA|-|PB||=2a=|3-8|=5£¬
¡àa=$\frac{5}{2}$£¬${e}_{Q}=\frac{5}{\frac{5}{2}}$=2£¬
¡àeM£¼eN£¼eQ£¼eP£®
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߺÍÍÖÔ²µÄÀëÐÄÂʵĴóС¹ØÏµµÄ±È½Ï£¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÖÔ²¡¢Ë«ÇúÏßµÄÐÔÖʵĺÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
11£®ÔÚ¡÷ABCÖУ¬$a=3£¬c=2£¬B=\frac{¦Ð}{3}$£¬Ôòb=£¨¡¡¡¡£©
| A£® | 19 | B£® | 7 | C£® | $\sqrt{19}$ | D£® | $\sqrt{7}$ |
12£®ÒÑÖªA£¬B£¬C£¬D¾ùÔÚÇòOµÄÇòÃæÉÏ£¬AB=BC=1£¬AC=$\sqrt{3}$£¬ÈôÈýÀâ×¶D-ABCÌå»ýµÄ×î´óÖµÊÇ$\frac{1}{4}$£®ÔòÇòOµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
| A£® | $\frac{4}{3}$¦Ð | B£® | $\frac{8}{3}$¦Ð | C£® | $\frac{16}{3}$¦Ð | D£® | 6¦Ð |
9£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1+a3=16£¬Ôòa2=£¨¡¡¡¡£©
| A£® | 7 | B£® | 8 | C£® | 9 | D£® | 10 |
6£®ÒÑÖªÃüÌâp£º?x¡ÊR£¬2x£¼3x£»ÃüÌâq£ºÇúÏßy=2x2-7¹ýµãP£¨3£¬9£©µÄÇÐÏßбÂÊΪ12£¬ÔòÏÂÁÐÃüÌâÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
| A£® | p¡Äq | B£® | ©Vp¡Äq | C£® | p¡Ä©Vq | D£® | ©Vp¡Ä©Vq |