题目内容
2.${∫}_{0}^{1}$$\frac{1}{(x+1)(x+2)(x+3)}$dx=$\frac{1}{2}$(5ln2-3ln3).分析 化简$\frac{1}{(x+1)(x+2)(x+3)}$=$\frac{1}{2}$($\frac{1}{x+1}$+$\frac{1}{x+3}$-$\frac{2}{x+2}$),从而化简${∫}_{0}^{1}$$\frac{1}{(x+1)(x+2)(x+3)}$dx=$\frac{1}{2}$(${∫}_{0}^{1}$$\frac{1}{x+1}$dx+${∫}_{0}^{1}$$\frac{1}{x+3}$dx-${∫}_{0}^{1}$$\frac{2}{x+2}$dx)=$\frac{1}{2}$(ln2-ln1+ln4-ln3-2(ln3-ln2)).
解答 解:∵$\frac{1}{(x+1)(x+2)(x+3)}$
=$\frac{1}{2}$($\frac{1}{(x+1)(x+2)}$-$\frac{1}{(x+2)(x+3)}$)
=$\frac{1}{2}$($\frac{1}{x+1}$+$\frac{1}{x+3}$-$\frac{2}{x+2}$),
∴${∫}_{0}^{1}$$\frac{1}{(x+1)(x+2)(x+3)}$dx
=${∫}_{0}^{1}$$\frac{1}{2}$($\frac{1}{x+1}$+$\frac{1}{x+3}$-$\frac{2}{x+2}$)dx
=$\frac{1}{2}$(${∫}_{0}^{1}$$\frac{1}{x+1}$dx+${∫}_{0}^{1}$$\frac{1}{x+3}$dx-${∫}_{0}^{1}$$\frac{2}{x+2}$dx)
=$\frac{1}{2}$(ln(x+1)$|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$+ln(x+3)$|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$-2ln(x+2)$|\left.\begin{array}{l}{1}\\{0}\end{array}\right.$)
=$\frac{1}{2}$(ln2-ln1+ln4-ln3-2(ln3-ln2))
=$\frac{1}{2}$(5ln2-3ln3).
故答案为:$\frac{1}{2}$(5ln2-3ln3).
点评 本题考查了学生的化简运算能力及定积分的运算.
| A. | $\frac{1}{3}$ | B. | eln3 | C. | log3e | D. | e |
| A. | -5 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 5 |