题目内容
19.已知P,Q分别在∠AOB的两边OA,OB上,∠AOB=$\frac{π}{3}$,△POQ的面积为8,则PQ中点M的极坐标方程为( )| A. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ<$\frac{π}{3}$) | B. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ<$\frac{π}{3}$) | ||
| C. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0<θ≤$\frac{π}{3}$) | D. | ρ2=$\frac{2\sqrt{3}}{sinθsin(\frac{π}{3}-θ)}$(0≤θ≤$\frac{π}{3}$) |
分析 根据P,O,Q三点不共线可判断出θ的范围.
解答 解:∵P,O,Q三点不共线,∴M不能落在OA上,也不能落在OB上,
∴0<θ<$\frac{π}{3}$.
故选:A.
点评 本题考查了极坐标方程的定义,属于基础题.
练习册系列答案
相关题目
10.化简cos2($\frac{x}{2}$-$\frac{7π}{8}$)-cos2($\frac{x}{2}$+$\frac{7π}{8}$)的结果为( )
| A. | $\frac{\sqrt{2}}{2}$cosx | B. | -$\frac{\sqrt{2}}{2}$cosx | C. | -$\frac{\sqrt{2}}{2}$sinx | D. | $\frac{\sqrt{2}}{2}$sinx |
20.已知函数f(x)=x2+x-2,x∈[-1,6],若在其定义域内任取一数x0使得f(x0)≤0概率是( )
| A. | $\frac{2}{7}$ | B. | $\frac{3}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{5}{7}$ |