题目内容

“m>n>1”是“logm2<logn2”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据对数函数的性质,利用充分条件和必要条件的定义进行判断即可.
解答: 解:不等式logm2<logn2等价为
1
log2m
1
log2n

若m>n>1,则log2m>log2n>0,
1
log2m
1
log2n
成立,即logm2<logn2成立.
当0<m<1时,logm2<0,当n>1时,logn2>0,满足“logm2<logn2”,但m>n>1不成立,
即“m>n>1”是“logm2<logn2”的充分不必要条件.
故选:A.
点评:本题主要考查充分条件和必要条件的判断,利用对数函数的性质以及不等式的性质是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网