题目内容

20.设函数f(x)=3cos2($\frac{π}{8}$x+$\frac{π}{5}$)-2,若对任意的x∈R都有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值为4.

分析 先化简函数,再由已知可知f(x1)是f(x)的最小值,f(x2)是f(x)的最大值,它们分别在最低和最高点取得,它们的横坐标最少相差半个周期,由三角函数式知周期的值,结果是周期的值的一半.

解答 解:f(x)=3cos2($\frac{π}{8}$x+$\frac{π}{5}$)-2=$\frac{3}{2}$cos($\frac{π}{4}$x+$\frac{2π}{5}$)-$\frac{1}{2}$,
∵对任意x∈R都有f(x1)≤f(x)≤f(x2),
∴f(x1)是函数f(x)的最小值,f(x2)是函数f(x)的最大值.
∴|x1-x2|的最小值为函数的半个周期,
∵T=$\frac{2π}{\frac{π}{4}}$=8,
∴|x1-x2|的最小值为4.
故答案为:4.

点评 本题考查三角函数的图象和最值,关键是对题意的理解,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网