题目内容

12.如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明PA∥平面BDE;
(2)证明:DE⊥面PBC;
(3)求直线AB与平面PBC所成角的大小.

分析 (1)连结AC,设AC与BD交于O点,连结EO,易证EO为△PAC的中位线,从而OE∥PA,再利用线面平行的判断定理即可证得PA∥平面BDE;
(2)依题意,易证DE⊥底面PBC,再利用面面垂直的判断定理即可证得平面BDE⊥平面PBC;
(3)将几何体放到正方体中,则可得直线AB与平面PBC所成角的大小.

解答 (1)证明:连结AC,设AC与BD交于O点,连结EO,
由O,E分别为AC,CP中点,
∴OE∥PA
又OE?平面EDB,PA?平面EDB,
∴PA∥平面EDB.(5分)
(2)证明:由PD⊥平面ABCD∴PD⊥BC又CD⊥BC,
∴BC⊥平面PCD,DE⊥BC.(8分)
由PD=DC,E为P中点,故DE⊥PC.
∴DE⊥平面PBC(10分)
(3)解:将几何体放到正方体中,则可得直线AB与平面PBC所成角的大小为45°.(14分)

点评 本题主要考查线与线,线与面,面与面的位置关系和线面平行和线面垂直的判定定理的灵活运用,培养学生形成知识网络及知识间相互转化的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网