题目内容

已知函数f(x)=-2cosx,x∈[0,π]在点P处的切线与函数g(x)=
1
2
x2+lnx在点Q处的切线平行,则直线PQ的斜率为(  )
A、
1
π
B、
1
2-π
C、2
D、π-2
考点:利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:设出P和Q点的坐标,分别求出两个函数的导函数,利用余弦函数的值域及不等式求最值得到两个导函数的取值范围,再由f(x)=-2cosx,x∈[0,π]在点P处的切线与函数g(x)=
1
2
x2+lnx在点Q处的切线平行得到P,Q点的横坐标,代入原函数求得P,Q的纵坐标,由两点求斜率得答案.
解答: 解:设P(a,b),Q(m,n),
由f(x)=-2cosx,得f′(x)=2sinx,
∵x∈[0,π],
∴0≤f′(x)≤2.
由g(x)=
1
2
x2+lnx,得g(x)=x+
1
x

∵x>0,
∴g′(x)≥2.
∵f(x)=-2cosx,x∈[0,π]在点P处的切线与函数g(x)=
1
2
x2+lnx在点Q处的切线平行,
∴2sina=m+
1
m
=2

∵a∈[0,π],m>0,
∴a=
π
2
,m=1,
∴b=-2cos
π
2
=0
,n=
1
2

∴直线PQ的斜率为:
1
2
-0
1-
π
2
=
1
2-π

故选:B.
点评:本题考查了利用导数研究过曲线上某点处的切线方程,考查了利用基本不等式求函数最值,考查了数学转化思想方法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网