题目内容

17.已知sinθ=$\frac{3}{5}$,θ∈(${\frac{π}{2}$,π),则tan(θ+$\frac{π}{4}$)=(  )
A.-7B.7C.$-\frac{1}{7}$D.$\frac{1}{7}$

分析 利用同角三角的基本关系求得 cosθ的值,可得tanθ的值,再利用两角和的正切公式求得tan(θ+$\frac{π}{4}$)的值.

解答 解:∵sinθ=$\frac{3}{5}$,θ∈(${\frac{π}{2}$,π),∴cosθ=-$\sqrt{{1-sin}^{2}θ}$=-$\frac{4}{5}$,tanθ=$\frac{sinθ}{cosθ}$=-$\frac{3}{4}$,
则tan(θ+$\frac{π}{4}$)=$\frac{tanθ+1}{1-tanθ}$=$\frac{\frac{1}{4}}{\frac{7}{4}}$=$\frac{1}{7}$,
故选:D.

点评 本题主要考查同角三角函数的基本关系、两角和的正切公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网