题目内容
3.已知等差数列{an}的前n项和为Sn,且满足:a3=6,a5+a7=24.(Ⅰ)求等差数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\frac{1}{S_n}}\right\}$的前P项和Tn.
分析 (Ⅰ)通过设等差数列{an}的首项为a1、公差为d,联立a3=6、a5+a7=24可知首项、公差,进而可得结论;
(Ⅱ)通过(Ⅰ)裂项可知$\frac{1}{{S}_{n}}$=$\frac{1}{n}$-$\frac{1}{n+1}$,进而并项相加即得结论.
解答 解:(Ⅰ)设等差数列{an}的首项为a1、公差为d,
∵a3=6,a5+a7=24,
∴$\left\{\begin{array}{l}{a_1}+2d=6\\({{a_1}+4d})+({{a_1}+6d})=24\end{array}\right.$,
解得:$\left\{\begin{array}{l}d=2\\{a_1}=2.\end{array}\right.$,
∴an=2+(n-1)×2=2n;
(Ⅱ)由(Ⅰ)得:${S_n}=\frac{{n({a_1}+{a_n})}}{2}=\frac{n(2+2n)}{2}=n(n+1)$,
所以${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{{{S_{n-1}}}}+\frac{1}{S_n}=\frac{1}{1×2}+\frac{1}{2×3}+…+\frac{1}{(n-1)n}+\frac{1}{n(n+1)}$
=$({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+…+({\frac{1}{n-1}-\frac{1}{n}})+({\frac{1}{n}-\frac{1}{n+1}})$
=$1-\frac{1}{n+1}=\frac{n}{n+1}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,利用裂项相消法是解决本题的关键,注意解题方法的积累,属于中档题.
| A. | [-3,-1] | B. | [-1,3) | C. | (-∞,-4] | D. | (-∞,-4]∪[1,-3) |
| A. | -2 | B. | $\frac{15}{2}$ | C. | 8 | D. | 12 |
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 2$\sqrt{2}$ |
| A. | 3条 | B. | 2条 | C. | 1条 | D. | 0条 |