题目内容

若以F为右焦点的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左支上存在一点P,使得线段PF被y=
b
a
x垂直平分,则双曲线的离心率是
 
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:设F(c,0),P(m,n),运用点关于直线对称的特点,由中点坐标公式和垂直的条件解得m,n,代入双曲线方程,化简整理,结合离心率公式计算即可得到.
解答: 解:设F(c,0),P(m,n),
n-0
m-c
=-
a
b
,且
1
2
n=
1
2
b
a
(c+m),
解得m=
a2-b2
c
,n=
2ab
c

将P(
a2-b2
c
2ab
c
)代入双曲线方程,
(a2-b2)2
c2a2
-
4a2
c2
=1,b2=c2-a2
化简整理可得,c2=5a2
e=
c
a
=
5

故答案为:
5
点评:本题考查双曲线的方程和性质,考查点关于直线对称的性质,考查运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网