ÌâÄ¿ÄÚÈÝ
16£®¸ø³öÒÔÏÂÃüÌ⣺¢ÙÈô·½³Ìx2+2x+m=0ÓÐʵ¸ù£¬Ôòm¡Ü2£»
¢ÚÈôË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßбÂÊΪ2£¬ÔòÆäÀëÐÄÂÊΪ$\sqrt{5}$£»
¢ÛÔÚÈñ½Ç¡÷ABCÖУ¬Ò»¶¨sinA£¾cosB³ÉÁ¢£»
¢ÜÇØ¾ÅÉØËã·¨µÄÌØµãÔÚÓÚ°ÑÇóÒ»¸ön´Î¶àÏîʽµÄֵת»¯ÎªÇón¸öÒ»´Î¶àÏîʽµÄÖµ£»
¢ÝËæ»úÄ£Äâ·½·¨µÄµì»ùÈËÊÇÃÉÌØ¿¨ÂÞ£®
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅΪ¢Ù¢Ú¢Û¢Ü£®
·ÖÎö ¢Ù£¬Èô·½³Ìx2+2x+m=0ÓÐʵ¸ù£¬Ôò¡÷=22-4m¡Ý0⇒m¡Ü1⇒m¡Ü2£»
¢Ú£¬ÈôË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßбÂÊΪ2£¬Ôò$\frac{b}{a}=2$£¬ÆäÀëÐÄÂÊΪ$\sqrt{\frac{{c}^{2}}{{a}^{2}}}=\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}=\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}=\sqrt{5}$£»
¢Û£¬ÔÚÈñ½Ç¡÷ABCÖУ¬A+B$£¾\frac{¦Ð}{2}$⇒$\frac{¦Ð}{2}$A£¾$\frac{¦Ð}{2}-B$£¾0⇒sinA£¾cosB³ÉÁ¢£»
¢Ü£¬ÇؾÅÉØËã·¨µÄÌØµãÔÚÓÚ°ÑÇóÒ»¸ön´Î¶àÏîʽµÄֵת»¯ÎªÇón¸öÒ»´Î¶àÏîʽµÄÖµ£»
¢Ý£¬Ëæ»úÄ£Äâ·½·¨µÄµì»ùÈËÊÇ·ë•ŵÒÁÂü£¬¹Ê´í£»
½â´ð ½â£º¶ÔÓÚ¢Ù£¬Èô·½³Ìx2+2x+m=0ÓÐʵ¸ù£¬Ôò¡÷=22-4m¡Ý0⇒m¡Ü1⇒m¡Ü2£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÈôË«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄÒ»Ìõ½¥½üÏßбÂÊΪ2£¬Ôò$\frac{b}{a}=2$£¬ÆäÀëÐÄÂÊΪ$\sqrt{\frac{{c}^{2}}{{a}^{2}}}=\sqrt{\frac{{a}^{2}+{b}^{2}}{{a}^{2}}}=\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}=\sqrt{5}$£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Û£¬ÔÚÈñ½Ç¡÷ABCÖУ¬A+B$£¾\frac{¦Ð}{2}$⇒$\frac{¦Ð}{2}$A£¾$\frac{¦Ð}{2}-B$£¾0⇒sinA£¾cosB³ÉÁ¢£¬¹ÊÕýÈ·£»
¶ÔÓڢܣ¬ÇؾÅÉØËã·¨µÄÌØµãÔÚÓÚ°ÑÇóÒ»¸ön´Î¶àÏîʽµÄֵת»¯ÎªÇón¸öÒ»´Î¶àÏîʽµÄÖµ£¬ÕýÈ·£»
¶ÔÓڢݣ¬Ëæ»úÄ£Äâ·½·¨µÄµì»ùÈËÊÇ·ë•ŵÒÁÂü£¬¹Ê´í£»
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û¢Ü
µãÆÀ ±¾Ì⿼²éÁËÃüÌâÕæ¼ÙµÄÅж¨£¬ÊôÓÚ»ù´¡Ì⣮
| A£® | {x|1£¼x£¼3} | B£® | {x|1¡Üx£¼3} | C£® | {x|1£¼x¡Ü3} | D£® | {x|1¡Üx¡Ü3} |
| A£® | $\frac{2}{7}$ | B£® | $\frac{3}{7}$ | C£® | $\frac{4}{7}$ | D£® | $\frac{5}{7}$ |