题目内容
在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是 °.
考点:异面直线及其所成的角
专题:计算题,空间角
分析:连结BC1、A1C1,由正方体的性质可得四边形AA1C1C为平行四边形,从而A1C1∥AC,∠BA1C1是异面直线A1B与AC所成的角.然后求解异面直线A1B与AC所成的角.
解答:
解:连结BC1、A1C1,
∵在正方体ABCD-A1B1C1D1中,A1A平行且等于C1C,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A1B1C中A1B=BC1=C1A1=
a,
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
∵在正方体ABCD-A1B1C1D1中,A1A平行且等于C1C,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A1B1C中A1B=BC1=C1A1=
| 2 |
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
点评:本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
练习册系列答案
相关题目
全集U={0,1,2,3,4},集合A={0,1,2},B={2,3,4},则A∪(∁UB)( )
| A、{0,1,2} |
| B、{0,1} |
| C、{0,1,2,3,4} |
| D、{3,4} |