题目内容

5.己知f(x),g(x)都是定义在R上的函数,并满足f(x)=ax•g(x)(a>0,且a≠1)和f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则a的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.2或$\frac{1}{2}$

分析 由已知得∴$\frac{f(x)}{g(x)}$=ax,且$\left\{\begin{array}{l}{0<a<1}\\{a+\frac{1}{a}=\frac{5}{2}}\end{array}\right.$,由此能求出a的值.

解答 解:∵f(x),g(x)都是定义在R上的函数,并满足f(x)=ax•g(x)(a>0,且a≠1),
∴$\frac{f(x)}{g(x)}$=ax
∵f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,
∴$\left\{\begin{array}{l}{0<a<1}\\{a+\frac{1}{a}=\frac{5}{2}}\end{array}\right.$,解得a=$\frac{1}{2}$.
故选为:A.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网