题目内容
15.在△ABC中,角A,B,C所对的边分别为a,b,c.若A=B,a=3,c=2,则cosC=$\frac{7}{9}$.分析 由已知可求b的值,利用余弦定理即可求值得解.
解答 解:∵A=B,a=3,c=2,可得:b=3,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{9+9-4}{2×3×3}$=$\frac{7}{9}$.
故答案为:$\frac{7}{9}$.
点评 本题主要考查了等腰三角形的性质,考查了余弦定理的应用,属于基础题.
练习册系列答案
相关题目
10.设命题p:“若$sinα=\frac{1}{2}$,则$α=\frac{π}{6}$”,命题q:“若a>b,则$\frac{1}{a}<\frac{1}{b}$”,则( )
| A. | “p∧q”为真命题 | B. | “p∨q”为假命题 | C. | “¬q”为假命题 | D. | 以上都不对 |
20.甲、乙两人进行射击比赛,各射击4局,每局射击10次,射击命中目标得1分,未命中目标得0分.两人4局的得分情况如下:
(Ⅰ)若从甲的4局比赛中,随机选取2局,求这2局的得分恰好相等的概率;
(Ⅱ)如果x=y=7,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)
| 甲 | 6 | 6 | 9 | 9 |
| 乙 | 7 | 9 | x | y |
(Ⅱ)如果x=y=7,从甲、乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,求X的分布列和数学期望;
(Ⅲ)在4局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出x的所有可能取值.(结论不要求证明)
5.己知f(x),g(x)都是定义在R上的函数,并满足f(x)=ax•g(x)(a>0,且a≠1)和f(x)•g′(x)>f′(x)•g(x)(g(x)≠0),且$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,则a的值为( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{5}{4}$ | D. | 2或$\frac{1}{2}$ |