题目内容
已知集合A={x|log2(8-2x)≤2},B={x|
<0}求:
(1)(∁RA)∪B;
(2)(∁RA)∪(∁RB).
| x-5 |
| x+1 |
(1)(∁RA)∪B;
(2)(∁RA)∪(∁RB).
考点:交、并、补集的混合运算
专题:集合
分析:首先根据分式函数和对数函数的特点确定出A和B,然后根据交集、并集、补集的定义得出答案即可.
解答:
解:∵log2(8-2x)≤2,∴0<8-2x≤4,
解得2≤x<3,∴A={x|2≤x<3}
∵
<0
∴-1<x<5
故B={x|-1<x<5}
∴∁RA={x|x≥3或x<2}
∁RB={x|x|x≥5或x≤-1}
∴(∁RA)∪(∁RB)={x|x≥3或x<2}.
解得2≤x<3,∴A={x|2≤x<3}
∵
| x-5 |
| x+1 |
∴-1<x<5
故B={x|-1<x<5}
∴∁RA={x|x≥3或x<2}
∁RB={x|x|x≥5或x≤-1}
∴(∁RA)∪(∁RB)={x|x≥3或x<2}.
点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目