题目内容
①三棱锥A-D1PC的体积不变;
②A1P∥平面ACD1;
③DP⊥BC1;
④平面PDB1⊥平面ACD1.
其中正确的结论的个数是( )
| A、1个 | B、2个 | C、3个 | D、4个 |
考点:命题的真假判断与应用,棱柱的结构特征
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答:
解:
对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,
故BC1上任意一点到平面AD1C的距离均相等,
所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;
对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,
若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,
可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.
故选:C.
故BC1上任意一点到平面AD1C的距离均相等,
所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;
对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,
若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,
可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.
故选:C.
点评:本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.
练习册系列答案
相关题目
已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=x-
的零点依次为a,b,c,则( )
| 1 | |||
|
| A、c<b<a |
| B、a<b<c |
| C、c<a<b |
| D、b<a<c |
若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )
| A、2 | ||
| B、4 | ||
C、
| ||
D、
|
设函数y=f(x)定义域为(-∞,+∞),满足f(x+1)=2f(x-1),当x∈[0,2)时,f(x)=
,若x∈[-4,-2)时,f(x)≤
+
恒成立,则实数m的取值范围( )
|
| m |
| 4 |
| 3 |
| 4m |
| A、(-∞,0]∪[1,3) |
| B、(0,1]∪[3,+∞) |
| C、(0,1)∪[3,+∞) |
| D、(0,1]∪(3,+∞) |
在长方体交于一点的三条棱上各取一点,过这三点作一截面,那么这个截面是( )
| A、钝角三角形 |
| B、锐角三角形 |
| C、直角三角形 |
| D、以上三种图形都可能 |
函数f定义在正整数有序对的集合上,并满足f(x,x)=x,f(x,y)=f(y,x),(x+y)f(x,y)=yf(x,x+y),则f(14,52)的值为( )
| A、364 | B、182 |
| C、91 | D、无法计算 |