题目内容

设函数y=f(x)定义域为(-∞,+∞),满足f(x+1)=2f(x-1),当x∈[0,2)时,f(x)=
4-x2-3x,x∈[0,1)
logx,x∈[1,2)
,若x∈[-4,-2)时,f(x)≤
m
4
+
3
4m
恒成立,则实数m的取值范围(  )
A、(-∞,0]∪[1,3)
B、(0,1]∪[3,+∞)
C、(0,1)∪[3,+∞)
D、(0,1]∪(3,+∞)
考点:分段函数的应用
专题:计算题
分析:求出当x∈[0,2)时,f(x)值域是[0,4],利用f(x+1)=2f(x-1),得出f(x)=
1
2
f(x+2)=
1
4
f(x+4),进而x∈[-4,-2)时,f(x)∈[0,1].f(x)≤
m
4
+
3
4m
恒成立,只需1≤
m
4
+
3
4m
,解此不等式求出m的取值范围.
解答: 解:当x∈[0,1)时,f(x)∈(0,4],当x∈[1,2)时,f(x)∈(0,ln2),
所以当x∈[0,2)时,f(x)值域是[0,4],
在f(x+1)=2f(x-1)中,令x-1=t,则x+1=t+2,
所以f(t)=
1
2
f(t+2)=
1
4
f(t+4)
若x∈[-4,-2)时,则x+4∈[2,0)时,
于是f(x)=
1
2
f(x+2)=
1
4
f(x+4)∈[0,1].
若f(x)≤
m
4
+
3
4m
恒成立,只需1≤
m
4
+
3
4m

所以m>0,且m2-4m+3≥0,
解得m∈(0,1]∪[3,+∞).
故选B
点评:本题考查分段函数值域求解,不等式恒成立,考查转化,计算逻辑推理能力.本题两个要点:一是求出x∈[-4,-2)时,f(x)∈[0,1].二是解f(x)max
m
4
+
3
4m
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网