题目内容

设数列{an}的前n项和为Sn=n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=
1
anan+1
,求数列{cn}的前n项和Tn
考点:数列的求和
专题:计算题,等差数列与等比数列
分析:(1)由an=
S1,n=1
Sn-Sn-1n≥2
可求得an,易求b1,由b2(a2-a1)=b1可求b2,从而可得公比,进而可得bn
(2)由(1)可得cn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
[
1
2n-1
-
1
2n+1
]
,由裂项相消法可求得Tn
解答: 解:(1)当n=1时,a1=S1=1;
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1
故{an}的通项公式为an=2n-1,即{an}是a1=1,公差d=2的等差数列.
设{bn}的公比为q,则b1=a1=1,又b2(a2-a1)=b1
b2=
1
2
∴q=
1
2

bn=b1qn-1=1×
1
2n-1
,即{bn}的通项公式为bn=
1
2n-1

(2)∵an=2n-1,
cn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
[
1
2n-1
-
1
2n+1
]

Tn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
(1-
1
2n+1
)

=
n
2n+1
点评:本题考查等差数列、等比数列的通项公式及数列求和问题,裂项相消法对数列求和是高考考查的重点内容,要熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网